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Scalar gradient fields by geometric measure theory
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Upper bounds of the Hausdorff volume of scalar gradient field graphs are derived by means of geometric
measure theory. The approach reproduces that scalar gradient fields along a mean imposed scalar gradient
become space filling for sufficiently high values of Schmidt numises The bounds are consistent with
findings from recent high-resolution numerical experiments fsiSkc< 64, but too rough when compared with
numerical simulations. A Reynolds number dependence of the bounds is found due to the additional scalar
gradient stretching term in the equation of motion.
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Recent direct numerical simulatiof@NS) suggested that graph. This can give us an idea of how the gradients are
the passive scalar mixing in a turbulent flow becomes morelistributed spatially and how this distribution dependssan
isotropic when the Schmidt numb8ic= v/« is increased to  Our findings will be compared finally with high-resolution

values larger than unity, but the Taylor Reynolds nunfRer numerical data for Schmidt numbers between 1 and 64 to test

of the advecting turbulent flow is kept Consté_mtz]_ Herev the SenSitiVity of the derived Scaling dimension bounds.

is the kinematic viscosity of the fluid andis the diffusivity
of the passive scalar fielé(x,t). The scalar was driven by a
constant mean scalar gradie@s= Ge,, in both simulations

The geometric measure theory generalizes concepts of
differential geometry to nonsmooth hypersurfaces embedded
in an Euclidian space. The central object is the graph of the

which causes deviations from isotropy of the small-scale staield under consideration, which is defined as

tistics. For increasingc, scalar filaments can be advected to

ever finer scales which steepens up the local gradients,
=0;0. Large gradientgor fronty that are aligned with the

I ={(x,0,)|xeB,CR%9,=9.(x)}. 1)

In case of a smooth field this is a three-dimensional hyper-

mean, i.e.g,, occur already foiSc~1 or even below and  syrface embedded in four-dimensional space. In Fig. 1 such a
are associated with characteristic scalar structures, so-calleflaph is shown over a two-dimensional plane that is vertical

ramps and cliffs(for further references, see R¢8]). A re-

to the direction ofG. We observe that the hypersurface is

turn to isotropic mixing is then thought as a growing com-strongly folded and rough for larger scales thus suggesting
pensation of those pronounced positive fronts by an increagractal properties.

ing number of steep negative gradients with increaSig

The Hausdorff dimension of such a gragh,{) (or more

Consequently, the probability density function gf gets precisely the box counting dimensiois obtained from the
more symmetric tails and odd order derivative momentsscaling behavior of its Hausdorff volunté(T',) with respect

decay. _ _ o ~ to scaler, the radius of ball8, of the covering5,10],
Our understanding of this process for advection in Navier-

Stokes flows is still incomplete and an investigation of geo-
metric properties of scalar gradient fields was started there
fore recently{4]. Fractal and multifractal properties of scalar
gradient level sets and related quantities were studied ther
in a series of high-resolution DNS where, e.g., a higher de-
gree of local isotropy was found to be related to a flatter
spectrum of generalize@nultifracta) dimensions. 104" \
On the theoretical side, concepts of geometric measure®
theory [5] were used successfully for scalars in turbulence ';'9
[6,7] and relations to the scaling behavior of low-order struc- %,
ture functions were established. An extension of the frame-= -10{%-
work discussed the dependence of the geometric propertie
of scalar level sets on Schmi¢r Prandt] number and on —20 .
spatial separation scales, respecti@ly The purpose of the
present brief report is to step in at this point and to extend the
approach to scalar gradient fields. We will focus on the phys-
ics in the Batchelor regime of scalar turbulence where the
advecting flow is in its viscous subran{@|. Scales below
the Kolmogorov dissipation scale of fluid turbulencs,
=(v%/€)Y but larger than the Batchelor scaleyg
= 7/Sc? are consideredk is the energy dissipation rate of  FIG. 1. The graph of the scalar gradient figlgwhich is shown
the flow. We will derive an upper bound for the scaling di- here over thex-z plane at fixedy, andt, for numerical data at
mension of the Hausdorff volume of the scalar gradient fieldSc=16. Grid resolution wal=512.
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_ term in Eqg.(3) by means of the advection-diffusion equation
H(T') = fB V1412 VG, [*d3x~rPh. (2)  for the scalar gradient component,
The relative Hausdorff volumei(T',)/V, can be estimated [0+ Uidi = kI TG o+ (9,1 Ti = — 7,u,G. (4)
as
From the resulting second-order balance one gets
H(Fr)<\/l+if |V~ |2d3x (3)
Vv, dar Jg, ¥ 9l O 1 . .
[VGal?= 5 [(ZUidi+ k7)Go = 20a(daUiTi + daUaC) ],
where the Cauchy-Schwartz inequality was used ahd )

=47r33. The scalar gradient field,(x,t) is measured in

units of its root-mean-square value, i.§,=9./V(da)v:  where summation is carried out over indewnly, but not

HereV=L?, whereL is the outer scale of turbulence. Simi- gver o. The time derivative is already omitted, because we

larly, G=G/ d(gi)v. will discuss the statistically stationary case. With substitution
Progress is made now with a substitution of the gradient5), inequality (3) becomes

H(T,) \/1+ 3 J
=
V, 47r k B,

=2
ga o~ ~ ~ -~
(_ ud; + Kalz)? - ga(‘?aui)gi - gaaauaG

d3x. (6)

We will consider now the four integrals under the square root
separately and denote them by, I, |3, andl,. From Eq. J u(x) V2 (x)d*= fﬁ u(x)Vo(x)-dA
(6), with incompressibility, and by applying the Gauss theo- v w
rem, it follows forl 4,

3r

—j Vu(x)-Vo(x)d3x, (1)
_ ~2 v
|1_2KAr 3€aBrga(u Uo) - dA. @

with u(x)=v(x) =9,(x) is taken. Substitution into E¢10)
A, =4mr?is the surface content &, and the surface normal and application of the Cauchy-Schwartz inequality result in
vector points toward the origin d3, . It is possible to add

Ug=u(Xxg), the velocity at the center oB, for which |2:ijg ol VG- dA
(Up) 48, =0. At this point, it has to be assumed that the fluc- 4mr Jog,
tuations”gi are equally distributed over the spheiB, in 1 1
order to getfg2u,-dA=0. The application of the Cauchy- <3r \/— jg @idA\/— % [VG,|°dA
. . . Ar JB Ar JB
Schwartz inequality results in r r
3r \/ ?g 4dA\/ 35 dA =3rVFo(1) (IV8.%) s . (12)
< — gt — u—ug)-n’—. (8 '
15570 aB,ga A, aB,(( 0)-N) A (8)

with Fo(r)=(g2) s, /(9%)v and Vg, =|Vg,[n. We assume

The first square root i_s a scale resolved scalar gradient flaihat the volume average as well as the surface average give
ness Wh'Chz Vg'” be discussed later and denotedFyr)  the same results over scaleslue to homogeneity of turbu-
:<9i>3,/<9a>v- Note that ther-dependence comes in via |ence.

coarse graining over balls of varying radiusThe second The third integrall; can be estimated by the Cauchy-
term stands for the second-order longitudinal velocity strucSchwartz inequality to
ture function, which isSy(r)=er?(15v) in the viscous 3

range, i.e., on scales around and below the Kolmogorov dis- l3=—
sipation scalep. We find

|<i 6F4(r)r2
1= 2k 150

T Ngid®
4meBrga(&aU.)g.d X

3

N

r

©) < . V(G50)6 ((9a)?)s,- (13

K {=

Integrall, in Eg. (6) can be written as ) )
It is reasonable to assume that the fluctuations along the

3 oo 1213 mean scalar gradient are the largest so that the mixed terms
'2_mj8 [0V 0ot [VTal"Jd . (10 can be estimated b§g597)e, <(Ta)s, =Fa(r) fori#a. The
r velocity gradient can be treated by the energy dissipation
Green’s formula for scalang(x) andv(x), averaged over balls B,. Here we estimated
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22 1((9.u)%)e =(e)g, /v. The notatione = (e)g, is used L 1% [Fne
for the following and consequently l4=— 47-rr;<f Gl 9oUo) GlPx< — S (19
r2  [F4(r)e
RN 0 10
K 14
Similarly one can proceed for the integtal In summary we get

2
Hi,rr)s\/l +3r¢F(r><|Vga|2>ﬁB+— r)e‘ G\/ r)e’ (16

Unfortunately we are left with a couple of unknown terms in Again the scaling exponente[ 8;,6,]. F4(r) can be esti-
this expression. Further progress can be made only by thmated as follows:
use of dimensional arguments. One can expect that the en-

ergy dissipation field fluctuates most strongly around sgale <gi>Br <g‘£‘¥)3r L\4
and large velocity gradients will be smoothed by the finite Fa(r)= =——F,(L)s|—| F4L), (21
. X I 4
viscosity on scales below. Therefore it is reasonable to as- (9 (9av 8
sume
y—1 2 3/4(y—1)
igﬁz(g) :<§()R;2 , (17)  Where Fy(L)=(go)v/(92)¥, (92)s,<G"/75, and (g3)v
€ € =G* L% Gis the magnitude of the mean scalar gradient. It

3/45—3/2 . . ) is also assumed that scalar gradient moments are at maxi-
where (/L) =(20/3)""R, *“[11]. v is a(universa) scaling  myum around the Batchelor scale. Thus follows
exponent varying betweep, andy,. Clearly, the minimum

exponenty; will be the dominant one. 27
The following term inI2 can be simplified to Faur)=< 80OOSCZR6 4(L). (22
- Fa(r)
<|Vga|2>ﬁBr <(ga)2>(9B - ’ (18)
75 75 The terml 5 will be much larger that, if for the mean scalar
andF(r) follows in line with Eq.(17) to gradient holdsG<<\F4(r)/F,(r), as it will be the case for

the comparison with numerical experiments. Finallywill

<g§>f75r €or _€omg [m)° " always be subdominant compareditodue toe, > e.

Fa(r)= <g2> z€_e$ €4 =\T ' (19) All the estimates are inserted now into E46) and we

alV assume a scaling relation for the relative Hausdorff volume,
H(T',)/V,~rP+~3  Additionally, all scales are expressed in
units of Kolmogorov dissipation lengtfi=r/7. The Haus-
a4 51 d_orff dimension _of the gra/ph over two-dimensional ba_IIs is
(@) Sc 1’2R;3’2} _ (20) given by the a_ddltlve lawp/,=Dy—1, [12] when assuming

almost isotropic graphs,

where eg,r=<eg)ﬁBr is the coarse grained scalar dissipation
rate. With g/ 7=Sc 2 one gets

Fa(r)=

dIn(H(T5)/Vx)
din¥

6,—1 _
d ' [27F 4(L) [ 20| #8011
<2+ ——In \/ 1+3 Sd2- i ¢ 80400 (3) SERIIWI2 (23
dInT

The expression probes the local slope of the scaling relation. The missing scalar derivative flatness fadtg(L) can be
The upper bound ob/, will be determined by the leading evaluated from Ref[1] and present simulations. The latter
term under the square root at every s@adnd we expect the are conducted in a homogeneously sheared flow in which the
result 2<D/;<3. scalar field of constant gradient was allowed to evolve ac-

D=2+

3/4

—3/2
R)\
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Figure 2 plots Eq(23) for three different values oBc.
For scales accessible to the simulations, i.e., larger #an
e the upper bound is found to be always three. While for the
3 scalar case the crossover®df, from two to three takes place

EnB/nISc=64 aroundng [8], it is present here for by far smaller scales. It
: AAA‘ is just the fairly rough estimate for the additional scalar gra-
A dient stretching ternjlast term on the lhs of Eq4)] that

: | causes the crossover scélg, to be smaller thamg. When
A DNS data inserting the numbers, one g&ts- Sc %R, 2**®% at which
: the second term of Eq23) starts to dominate. To illustrate
12} e ***ﬁii this effect, we kept, only and plot the correspondirgy;, as
10 A : dashed lines in Fig. 2. The bounds are shifted then by an
order of magnitude, but still rough due to estimé@).

1 ¥ 5 ; : For comparison, we conducted the relative Hausdorff vol-
log, (Sc) : ume of the scalar gradient field from numerical simulation
: . = : . : data. Two-dimensional “balls” are then squares of a dyadic
-2 -1 1 2 . . i .
log, ,(rm) grid of S|d§ Iength Z"x 277. The cgrre;pondlng local slope.
FIG. 2. Scale dependent upper bound of the Hausdorff dimenpf the_scallng d_lmenglon is added in Fig. 2and a plateaq with
sion of scalar gradient level sets for different Schmidt numbers@ Noninteger dimension dd{,~2.3 can be observed for in-
Value of R, =87 is taken from Ref[4]. Solid lines are forSc ~ termediate scales. This feature cannot be reproduced by the
=64 (thick line), 6.4, and 0.64 from left to right. Dashed lines are upper bounds because fliedlependence of all four terms
for bounds at the sanfgcif integral I, would dominate in Eq(23)  has integer powers only. Even for passive scalars, noninteger

as in the scalar cag8]. The Batchelor scale fd8c=64 is marked D, were obtained only for inertial range scaling of the ve-
as a dotted vertical line. The panel contains also the DNS findingﬁjcity structure function of-r23 (cf. Ref.[8]).

for the scale resolve®/, for Sc=64 with a plateau at a value of To summarize. we have discussed the applicability of the
about 2.3. Inset: Flatness factey(L) of the scalar derivative along ! PP y

the mean scalar gradiegt, as a function of the Schmidt number. geomletric measure theory to scalar gradient fi.elds for_high-
The dotted line stands for the mean of all data points and is draw®C Mixing. The upper bounds oby are consistent with
at 12. Present data are indicated by triangles and data fronfRef. Simulation results but rough. Additionally, they are insensi-
by asterisks. tive to the particular choice of the threshold value of the
level set and thus cannot capture slight differences between
cording to the advection-diffusion equatipf13]. The mean Positive and negative level sets of same magnitude which
scalar gradient is kept the same in all runs resulting in diWwere discussed in Reff4]. Interestingly, a dependence of the
mensionles& =037 atSc=1 and 0.05 aSc=64 so that bounds on the Taylor-Reynolds number results. Batchelor’s

- original model for the viscous-convective range was thought
G<<F4(r)/F,(r) is justified. As the inset of Fig. 2 shows, g g 9

, , to be insensitive to the physics in the inertial range, i.e., on
the flatness factors for both simulations ar@0 for Sc>1  gcqjes largen; [9]. A detailed investigation of that problem
and will be taken constant for the following.

will be a part of future work and further improvement and

The two minimum scaling exponentg and 8, can be  eytension of the bounds might be possible therefore.
taken from experiments where the whole multifractal spec-

trum for e,4(x,t) ande(x,t) was measured, respectively. Me-  The numerical computations were carried out on the IBM
neveau and Sreenivasfty] found for experimental data at Blue Horizon at the San Diego Supercomputer Center within
different Reynolds numbers thgt is about 1/4. Prasaet al.  the NPACI program of the U.S. National Science Foundation
found a value of8;~2/5 in a high-Schmidt number scalar which we wish to acknowledge. Comments by C.R. Doering,
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mixing experiment aBc~2000[15]. B. Eckhardt, and K. R. Sreenivasan are acknowledged.
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