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Scalar gradient fields by geometric measure theory
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Upper bounds of the Hausdorff volume of scalar gradient field graphs are derived by means of geometric
measure theory. The approach reproduces that scalar gradient fields along a mean imposed scalar gradient
become space filling for sufficiently high values of Schmidt numbersSc. The bounds are consistent with
findings from recent high-resolution numerical experiments for 1<Sc<64, but too rough when compared with
numerical simulations. A Reynolds number dependence of the bounds is found due to the additional scalar
gradient stretching term in the equation of motion.
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Recent direct numerical simulations~DNS! suggested tha
the passive scalar mixing in a turbulent flow becomes m
isotropic when the Schmidt numberSc5n/k is increased to
values larger than unity, but the Taylor Reynolds numberRl

of the advecting turbulent flow is kept constant@1,2#. Heren
is the kinematic viscosity of the fluid andk is the diffusivity
of the passive scalar fieldu(x,t). The scalar was driven by
constant mean scalar gradient,G5Gea , in both simulations
which causes deviations from isotropy of the small-scale
tistics. For increasingSc, scalar filaments can be advected
ever finer scales which steepens up the local gradientsgi
5] iu. Large gradients~or fronts! that are aligned with the
mean, i.e.,ga , occur already forSc;1 or even below and
are associated with characteristic scalar structures, so-c
ramps and cliffs~for further references, see Ref.@3#!. A re-
turn to isotropic mixing is then thought as a growing co
pensation of those pronounced positive fronts by an incre
ing number of steep negative gradients with increasingSc.
Consequently, the probability density function ofga gets
more symmetric tails and odd order derivative mome
decay.

Our understanding of this process for advection in Nav
Stokes flows is still incomplete and an investigation of ge
metric properties of scalar gradient fields was started th
fore recently@4#. Fractal and multifractal properties of scal
gradient level sets and related quantities were studied t
in a series of high-resolution DNS where, e.g., a higher
gree of local isotropy was found to be related to a flat
spectrum of generalized~multifractal! dimensions.

On the theoretical side, concepts of geometric meas
theory @5# were used successfully for scalars in turbulen
@6,7# and relations to the scaling behavior of low-order stru
ture functions were established. An extension of the fram
work discussed the dependence of the geometric prope
of scalar level sets on Schmidt~or Prandtl! number and on
spatial separation scales, respectively@8#. The purpose of the
present brief report is to step in at this point and to extend
approach to scalar gradient fields. We will focus on the ph
ics in the Batchelor regime of scalar turbulence where
advecting flow is in its viscous subrange@9#. Scales below
the Kolmogorov dissipation scale of fluid turbulence,h
5(n3/e)1/4, but larger than the Batchelor scalehB
5h/Sc1/2 are considered.e is the energy dissipation rate o
the flow. We will derive an upper bound for the scaling d
mension of the Hausdorff volume of the scalar gradient fi
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graph. This can give us an idea of how the gradients
distributed spatially and how this distribution depends onSc.
Our findings will be compared finally with high-resolutio
numerical data for Schmidt numbers between 1 and 64 to
the sensitivity of the derived scaling dimension bounds.

The geometric measure theory generalizes concept
differential geometry to nonsmooth hypersurfaces embed
in an Euclidian space. The central object is the graph of
field under consideration, which is defined as

G r5$~x,ga!uxPBr,R3,ga5ga~x!%. ~1!

In case of a smooth field this is a three-dimensional hyp
surface embedded in four-dimensional space. In Fig. 1 su
graph is shown over a two-dimensional plane that is vert
to the direction ofG. We observe that the hypersurface
strongly folded and rough for larger scales thus sugges
fractal properties.

The Hausdorff dimension of such a graph (DH) ~or more
precisely the box counting dimension! is obtained from the
scaling behavior of its Hausdorff volumeH(G r) with respect
to scaler, the radius of ballsBr of the covering@5,10#,

FIG. 1. The graph of the scalar gradient fieldga which is shown
here over thex-z plane at fixedy0 and t0 for numerical data at
Sc516. Grid resolution wasN5512.
©2004 The American Physical Society01-1
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H~G r !5E
Br

A11r 2u“g̃au2d3x;r DH. ~2!

The relative Hausdorff volumeH(G r)/Vr can be estimated
as

H~G r !

Vr
<A11

3

4pr EBr

u“g̃au2d3x, ~3!

where the Cauchy-Schwartz inequality was used andVr
54p r 3/3. The scalar gradient fieldga(x,t) is measured in
units of its root-mean-square value, i.e.,g̃a5ga /A^ga

2&V.
HereV5L3, whereL is the outer scale of turbulence. Sim
larly, G̃5G/A^ga

2&V.
Progress is made now with a substitution of the gradi
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term in Eq.~3! by means of the advection-diffusion equatio
for the scalar gradient component,

@] t1ui] i2k] i
2#g̃a1~]aui !g̃i52]auaG̃. ~4!

From the resulting second-order balance one gets

u“g̃au25
1

2k
@~2ui] i1k] i

2!g̃a
222g̃a~]aui g̃i1]auaG̃!#,

~5!

where summation is carried out over indexi only, but not
over a. The time derivative is already omitted, because
will discuss the statistically stationary case. With substitut
~5!, inequality~3! becomes
H~G r !

Vr
<A11

3

4prkEBr

F ~2ui] i1k] i
2!

g̃a
2

2
2g̃a~]aui !g̃i2g̃a]auaG̃Gd3x. ~6!
in

give
-

y-

the
rms

tion
We will consider now the four integrals under the square r
separately and denote them byI 1 , I 2 , I 3, andI 4. From Eq.
~6!, with incompressibility, and by applying the Gauss the
rem, it follows for I 1,

I 15
3r

2kAr
R

]Br

g̃a
2~u2u0!•dA. ~7!

Ar54pr 2 is the surface content ofBr and the surface norma
vector points toward the origin ofBr . It is possible to add
u05u(x0), the velocity at the center ofBr for which
^u0&]Br

50. At this point, it has to be assumed that the flu

tuations g̃a
2 are equally distributed over the sphere]Br in

order to getrg̃a
2u0•dA50. The application of the Cauchy

Schwartz inequality results in

I 1<
3r

2kA R
]Br

g̃a
4 dA

Ar
A R

]Br

„~u2u0!•n…2
dA

Ar
. ~8!

The first square root is a scale resolved scalar gradient
ness which will be discussed later and denoted byF4(r )
5^ga

4&Br
/^ga

2&V
2 . Note that ther-dependence comes in vi

coarse graining over balls of varying radiusr. The second
term stands for the second-order longitudinal velocity str
ture function, which isSi(r )5er 2/(15n) in the viscous
range, i.e., on scales around and below the Kolmogorov
sipation scaleh. We find

I 1<
3

2k
AeF4~r !

15n
r 2. ~9!

Integral I 2 in Eq. ~6! can be written as

I 25
3

4pr EBr

@ g̃a“
2g̃a1u“g̃au2#d3x. ~10!

Green’s formula for scalarsu(x) andv(x),
t

-

-

t-

-

s-

E
V
u~x!“2v~x!d3x5 R

]V
u~x!“v~x!•dA

2E
V
“u~x!•“v~x!d3x, ~11!

with u(x)5v(x)5g̃a(x) is taken. Substitution into Eq.~10!
and application of the Cauchy-Schwartz inequality result

I 25
3

4pr R
]Br

g̃au“g̃aun•dA

<3rA 1

Ar
R

]Br

g̃a
2dAA 1

Ar
R

]Br

u“g̃au2dA

53rAF2~r !A^u“g̃au2&]Br
, ~12!

with F2(r )5^ga
2&]Br

/^ga
2&V and“g̃a5u“g̃aun. We assume

that the volume average as well as the surface average
the same results over scalesr due to homogeneity of turbu
lence.

The third integralI 3 can be estimated by the Cauch
Schwartz inequality to

I 352
3

4prkEBr

g̃a~]aui !g̃id
3x

<
r 2

k (
i 51

3

A^g̃a
2 g̃i

2&Br
^~]aui !

2&Br
. ~13!

It is reasonable to assume that the fluctuations along
mean scalar gradient are the largest so that the mixed te
can be estimated bŷg̃a

2 g̃i
2&Br

<^g̃a
4&Br

5F4(r ) for iÞa. The
velocity gradient can be treated by the energy dissipa
averaged over balls Br . Here we estimated
1-2
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( i 51
3 ^(]aui)

2&Br
&^e&Br

/n. The notatione r5^e&Br
is used

for the following and consequently

I 3<
r 2

k
AF4~r !e r

n
. ~14!

Similarly one can proceed for the integralI 4,
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3

4prkEBr

g̃a~]aua!G̃d3x<
r 2G̃

k
AF2~r !e r

n
. ~15!

In summary we get
H~G r !

Vr
<A11

3r 2

2k
AeF4~r !

15n
13rAF2~r !^u“g̃au2&]Br

1
r 2

k
AF4~r !e r

n
1

r 2G̃

k
AF2~r !e r

n
. ~16!
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Unfortunately we are left with a couple of unknown terms
this expression. Further progress can be made only by
use of dimensional arguments. One can expect that the
ergy dissipation field fluctuates most strongly around scalh
and large velocity gradients will be smoothed by the fin
viscosity on scales below. Therefore it is reasonable to
sume

e r

e
<

eh

e
.S h

L D g21

5S 20

3
Rl

22D 3/4(g21)

, ~17!

where (h/L)5(20/3)3/4Rl
23/2 @11#. g is a ~universal! scaling

exponent varying betweeng1 andg2. Clearly, the minimum
exponentg1 will be the dominant one.

The following term inI 2 can be simplified to

^u“g̃au2&]Br
<

1

hB
2 ^~ g̃a!2&]Br

5
F2~r !

hB
2

, ~18!

andF2(r ) follows in line with Eq.~17! to

F2~r !5
^ga

2&]Br

^ga
2&V

.
eu,r

eu
<

eu,hB

eu
.S hB

L D d21

, ~19!

whereeu,r5^eu&]Br
is the coarse grained scalar dissipati

rate. WithhB /h5Sc21/2 one gets

F2~r !<F S 20

3 D 3/4

Sc21/2Rl
23/2Gd21

. ~20!
he
n-

s-

Again the scaling exponentdP@d1 ,d2#. F4(r ) can be esti-
mated as follows:

F4~r !5
^ga

4&Br

^ga
2&V

2
5

^ga
4&Br

^ga
4&V

F4~L !<S L

hB
D 4

F4~L !, ~21!

where F4(L)5^ga
4&V /^ga

2&V
2 , ^ga

4&Br
<G4/hB

4 , and ^ga
4&V

.G4/L4. G is the magnitude of the mean scalar gradient
is also assumed that scalar gradient moments are at m
mum around the Batchelor scale. Thus follows

F4~r !<
27

8000
Sc2Rl

6F4~L !. ~22!

The termI 3 will be much larger thanI 4 if for the mean scalar
gradient holds,G̃!AF4(r )/F2(r ), as it will be the case for
the comparison with numerical experiments. Finally,I 1 will
always be subdominant compared toI 3 due toe r@e.

All the estimates are inserted now into Eq.~16! and we
assume a scaling relation for the relative Hausdorff volum
H(G r)/Vr;r DH23. Additionally, all scales are expressed
units of Kolmogorov dissipation length,r̃ 5r /h. The Haus-
dorff dimension of the graph over two-dimensional balls
given by the additive law,DH8 5DH21, @12# when assuming
almost isotropic graphs,
DH8 521
d ln„H~G r̃ !/Vr̃…

d ln r̃

<21
d

d ln r̃
lnA113F S 20

3
D 3/4

Rl
23/2G d121

Sc(22d1)/2r̃ 1A27F4~L !

8000
S 20

3
D 3/8(g121)

Sc2Rl
(1523g1)/4r̃ 2. ~23!
r
the

ac-
The expression probes the local slope of the scaling relat
The upper bound ofDH8 will be determined by the leading
term under the square root at every scaler̃ and we expect the
result 2<DH8 <3.
n. The missing scalar derivative flatness factorF4(L) can be
evaluated from Ref.@1# and present simulations. The latte
are conducted in a homogeneously sheared flow in which
scalar field of constant gradient was allowed to evolve
1-3
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cording to the advection-diffusion equation@4,13#. The mean
scalar gradient is kept the same in all runs resulting in
mensionlessG̃50.37 atSc51 and 0.05 atSc564 so that
G̃!AF4(r )/F2(r ) is justified. As the inset of Fig. 2 shows
the flatness factors for both simulations are;10 for Sc.1
and will be taken constant for the following.

The two minimum scaling exponentsg1 and d1 can be
taken from experiments where the whole multifractal sp
trum for eu(x,t) ande(x,t) was measured, respectively. M
neveau and Sreenivasan@14# found for experimental data a
different Reynolds numbers thatg1 is about 1/4. Prasadet al.
found a value ofd1'2/5 in a high-Schmidt number scala
mixing experiment atSc'2000 @15#.

FIG. 2. Scale dependent upper bound of the Hausdorff dim
sion of scalar gradient level sets for different Schmidt numbe
Value of Rl587 is taken from Ref.@4#. Solid lines are forSc
564 ~thick line!, 6.4, and 0.64 from left to right. Dashed lines a
for bounds at the sameSc if integral I 1 would dominate in Eq.~23!
as in the scalar case@8#. The Batchelor scale forSc564 is marked
as a dotted vertical line. The panel contains also the DNS find
for the scale resolvedDH8 for Sc564 with a plateau at a value o
about 2.3. Inset: Flatness factorF4(L) of the scalar derivative along
the mean scalar gradientga as a function of the Schmidt numbe
The dotted line stands for the mean of all data points and is dr
at 12. Present data are indicated by triangles and data from Re@1#
by asterisks.
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Figure 2 plots Eq.~23! for three different values ofSc.
For scales accessible to the simulations, i.e., larger thanhB

the upper bound is found to be always three. While for
scalar case the crossover ofDH8 from two to three takes place
aroundhB @8#, it is present here for by far smaller scales.
is just the fairly rough estimate for the additional scalar g
dient stretching term@last term on the lhs of Eq.~4!# that
causes the crossover scale,r̃ c , to be smaller thanhB . When
inserting the numbers, one getsr̃ c;Sc26/5Rl

2213/80, at which
the second term of Eq.~23! starts to dominate. To illustrate
this effect, we keptI 1 only and plot the correspondingDH8 as
dashed lines in Fig. 2. The bounds are shifted then by
order of magnitude, but still rough due to estimate~22!.

For comparison, we conducted the relative Hausdorff v
ume of the scalar gradient field from numerical simulati
data. Two-dimensional ‘‘balls’’ are then squares of a dya
grid of side length 22 j32p. The corresponding local slop
of the scaling dimension is added in Fig. 2 and a plateau w
a noninteger dimension ofDH8 '2.3 can be observed for in
termediate scales. This feature cannot be reproduced by
upper bounds because ther̃ dependence of all fourI terms
has integer powers only. Even for passive scalars, nonint
DH were obtained only for inertial range scaling of the v
locity structure function of;r 2/3 ~cf. Ref. @8#!.

To summarize, we have discussed the applicability of
geometric measure theory to scalar gradient fields for hi
Sc mixing. The upper bounds onDH are consistent with
simulation results but rough. Additionally, they are insen
tive to the particular choice of the threshold value of t
level set and thus cannot capture slight differences betw
positive and negative level sets of same magnitude wh
were discussed in Ref.@4#. Interestingly, a dependence of th
bounds on the Taylor-Reynolds number results. Batchel
original model for the viscous-convective range was thou
to be insensitive to the physics in the inertial range, i.e.,
scales largerh @9#. A detailed investigation of that problem
will be a part of future work and further improvement an
extension of the bounds might be possible therefore.

The numerical computations were carried out on the IB
Blue Horizon at the San Diego Supercomputer Center wit
the NPACI program of the U.S. National Science Foundat
which we wish to acknowledge. Comments by C.R. Doeri
B. Eckhardt, and K. R. Sreenivasan are acknowledged.
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